(i) AB - BA is a Skew Symmetric matrix
We are given that A’=A and B’=B
⇒ (AB-BA)’=(AB)’-(BA)’
⇒ (AB)’-(BA)’=B’A’-A’B’
⇒ B’A’-A’B’=BA-AB=-(AB-BA)
⇒ (AB-BA)’=-(AB-BA) (skew symmetric matrix)
(ii) BA - 2AB is a Neither Symmetric nor Skew Symmetric matrix
Given A’=A and B’=B
⇒ (BA-2AB)’=(BA)’-(2AB)’
⇒ (BA)’-(2AB)’=A’B’-2B’A’
⇒ A’B’-2B’A’=AB-2BA=-(2BA-AB)
⇒ (BA-2AB)’=-(2BA-AB)