Get Answers to all your Questions

header-bg qa

11.  Find a particular solution satisfying the given condition:

(x3+x2+x+1)dydx=2x2+x;y=1 when x=0

Answers (1)

best_answer

Given, in the question

(x3+x2+x+1)dydx=2x2+x

dy=2x2+x(x3+x2+x+1)dx

(x3+x2+x+1)=(x+1)(x2+1)

Now,

2x2+x(x+1)(x2+1)=Ax+1+Bx+Cx2+1

2x2+x(x+1)(x2+1)=Ax2+A(Bx+C)(x+1)(x+1)(x2+1)

2x2+x=Ax2+A+Bx+Cx+C

2x2+x=(A+B)x2+(B+C)x+A+C

Now comparing the coefficients

A+B=2;B+C=1;A+C=0

Solving these:

A=12, B=32,C=12

Putting the values of A,B,C:

2x2+x(x+1)(x2+1)=121(x+1)+123x1x2+1

Therefore,

dy=121x+1dx+123x1x2+1dx

y=12log(x+1)+32xx2+1dx12dxx2+1

y=12log(x+1)+342xx2+1dx12tan1x

Let x2+1=t

342xx2+1dx=34dtt

So, I=34logt

I=34log(x2+1)
y=12log(x+1)+34log(x2+1)12tan1x+c
y=14[2log(x+1)+3log(x2+1)]12tan1x+c
y=14[log(x+1)2+log(x2+1)3]12tan1x+c

Now, y=1 when x=0

1=14×012×0+c
c=1
Putting the value of c , we get:
y=14[log{(x+1)2(x2+1)}]12tan1x+1

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads