Get Answers to all your Questions

header-bg qa

12.Find a particular solution satisfying the given condition:

        x(x^2 -1)\frac{dy}{dx} =1;\ y = 0\ \textup{when} \ x = 2

Answers (1)

best_answer

Given, in the question

x(x^2 -1)\frac{dy}{dx} =1

\\ \implies \int dy=\int \frac{dx}{x(x^2 -1)} \\ \implies \int dy=\int \frac{dx}{x(x -1)(x+1)}

Let,

Now comparing the values of A,B,C

A + B + C = 0;  B-C = 0;  A = -1

Solving these:

 

Now putting the values of A,B,C

Given, y =0 when x =2

Therefore,

\\ \implies y = \frac{1}{2}\log[\frac{4(x-1)(x+1)}{3x^2}]

\\ \implies y = \frac{1}{2}\log[\frac{4(x^2-1)}{3x^2}]

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads