Get Answers to all your Questions

header-bg qa

Q: 4         Find a point on the x-axis, which is equidistant from the points  (7,6) and (3,4).

Answers (1)

best_answer

Point is on the x-axis, therefore, y coordinate is 0
Let's assume the point is (x, 0)
Now, it is given that the given point (x, 0) is equidistance from point  (7, 6) and (3, 4)
We know that
Distance between two points is given by
D = |\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}|
Now,
D_1 = |\sqrt{(x-7)^2+(0-6)^2}|= |\sqrt{x^2+49-14x+36}|= |\sqrt{x^2-14x+85}|
and
D_2 = |\sqrt{(x-3)^2+(0-4)^2}|= |\sqrt{x^2+9-6x+16}|= |\sqrt{x^2-6x+25}|
Now, according to the given condition
D_1=D_2
|\sqrt{x^2-14x+85}|= |\sqrt{x^2-6x+25}|
Squaring both the sides
x^2-14x+85= x^2-6x+25\\ 8x = 60\\ x=\frac{60}{8}= \frac{15}{2}
Therefore, the point is ( \frac{15}{2},0)
 

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads