Get Answers to all your Questions

header-bg qa

Q12  Let \vec a = \hat i + 4 \hat j + 2 \hat k , \vec b = 3 \hat i - 2 \hat j + 7 \hat k \: \:and \: \: \vec c = 2 \hat i - \hat j + 4 \hat k  . Find a vector \vec d which is perpendicular to both  \vec a \: \: and \: \: \vec b \: \: and \: \: \vec c . \vec d = 15

Answers (1)

best_answer

Given,

\vec a = \hat i + 4 \hat j + 2 \hat k , \vec b = 3 \hat i - 2 \hat j + 7 \hat k \: \:and \: \: \vec c = 2 \hat i - \hat j + 4 \hat k

Let \vec d=d_1\hat i+d_2\hat j +d_3\hat k

now, since it is given that d is perpendicular to \vec a and \vec b, we got the condition,

\vec b.\vec d=0   and   \vec a.\vec d=0

(\hat i+4\hat j +2\hat k)\cdot(d_1\hat i +d_2\hat j+d_3\hat k)=0   And  (3\hat i-2\hat j +7\hat k)\cdot(d_1\hat i +d_2\hat j+d_3\hat k)=0

d_1+4d_2+2d_3=0     And 3d_1-2d_2+7d_3=0

here we got 2 equation and 3 variable. one more equation will come from the condition:

 \vec c . \vec d = 15

(2\hat i-\hat j +4\hat k)\cdot(d_1\hat i +d_2\hat j+d_3\hat k)=15

2d_1-d_2+4d_3=15

so now we have three equation and three variable,

d_1+4d_2+2d_3=0

3d_1-2d_2+7d_3=0

2d_1-d_2+4d_3=15

On solving this three equation we get,

d_1=\frac{160}{3},d_2=-\frac{5}{3}\:and\:d_3=-\frac{70}{3},

Hence Required vector :

\vec d=\frac{160}{3}\hat i-\frac{5}{3}\hat j-\frac{70}{3}\hat k.

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads