Get Answers to all your Questions

header-bg qa

12. Find all points of discontinuity of f, where f is defined by 

f (x) = \left\{\begin{matrix} x ^{10} -1 & if x \leq 1 \\ x ^2 & x > 1 \end{matrix}\right.

Answers (1)

best_answer

Given function is
f (x) = \left\{\begin{matrix} x ^{10} -1 & if x \leq 1 \\ x ^2 & x > 1 \end{matrix}\right.
given function is defined for every real number k 
There are different cases for the given function
case(i)   k > 1
f(k) = k^2\\ \lim_{x\rightarrow k}f(x) = k^2\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k > 1

case(ii)   k < 1
f(k) = k^{10} -1\\ \lim_{x\rightarrow k}f(x) = k^{10}-1\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k < 1

case(iii)  x = 1

\lim_{x\rightarrow 1^-}f(x) = x^{10}-1 = 1^{10} - 1 = 1 - 1 = 0\\ \lim_{x\rightarrow 1^+}f(x) = x^2 = 1^2 = 1\\ f(1) = x^{10}-1 = 0\ f(1) = L.H.L. \neq R.H.L.
 
Hence, x = 1  is the point of discontinuity
 

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads