34. Find all the points of discontinuity of f defined by
Given function is
Let g(x) = |x| and h(x) = |x+1|
Now,
g(x) is defined for all real numbers k
case(i) k < 0
Hence, g(x) is continuous when k < 0
case (ii) k > 0
Hence, g(x) is continuous when k > 0
case (iii) k = 0
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
g(x) is defined for all real numbers k
case(i) k < -1
Hence, h(x) is continuous when k < -1
case (ii) k > -1
Hence, h(x) is continuous when k > -1
case (iii) k = -1
Hence, h(x) is continuous when k = -1
Therefore, h(x) = |x+1| is continuous for all real values of x
g(x) is continuous and h(x) is continuous
Therefore, f(x) = g(x) - h(x) = |x| - |x+1| is also continuous