Get Answers to all your Questions

header-bg qa

Q1 Find an anti derivative (or integral) of the following functions by the method of inspection. \sin 2x

Answers (1)

best_answer

GIven \sin 2x;

So, the anti derivative of \sin 2x is a function of x whose derivative is \sin 2x.

\frac{d}{dx}\left ( \cos 2x \right ) = -2\sin 2x

\implies \sin 2x =\frac{-1}{2} \frac{d}{dx}\left ( \cos 2x \right )

Therefore, we have \implies \sin 2x = \frac{d}{dx}\left ( \frac{-1}{2}\cos 2x \right )

Or, antiderivative of \sin 2x is \left ( \frac{-1}{2}\cos 2x \right ).

 

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads