Get Answers to all your Questions

header-bg qa

Q5  Find an anti derivative (or integral) of the following functions by the method of inspection. \sin 2x - 4 e ^{3x}

Answers (1)

best_answer

GIven \sin 2x - 4 e ^{3x};

So, the anti derivative of \sin 2x - 4 e ^{3x} is a function of x whose derivative is \sin 2x - 4 e ^{3x}.

\frac{d}{dx} (-\frac{1}{2}\cos 2x - \frac{4}{3}e^{3x}) = \sin 2x -4e^{3x}

Therefore, we have the anti derivative of \sin 2x - 4 e ^{3x} is  \left ( -\frac{1}{2}\cos 2x - \frac{4}{3}e^{3x} \right ).

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads