Get Answers to all your Questions

header-bg qa

Q 13    Find dy/dx   if y = sin ^{-1} x + sin^{-1} \sqrt{1- x^2} , 0 <x< 1

Answers (1)

best_answer

Given function is 
y = sin ^{-1} x + sin^{-1} \sqrt{1- x^2} , 0 <x< 1
Now, differentiate w.r.t. x 
\frac{dy}{dx}= \frac{d(sin ^{-1} x + sin^{-1} \sqrt{1- x^2})}{dx} = \frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-(\sqrt{1-x^2})^2}}.\frac{d(\sqrt{1-x^2})}{dx}\\ \frac{dy}{dx}= \frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-1+x^2}}.\frac{1}{2\sqrt{1-x^2}}.(-2x)\\ \\ \frac{dy}{dx}= \frac{1}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}}\\ \frac{dy}{dx}= 0
Therefore, differentiate w.r.t. x  is 0

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads