Get Answers to all your Questions

header-bg qa

2.1  Find four numbers forming a geometric progression in which the third term is greater than the first term by 9, and  the second term is greater than the 4 ^{th} by 18.

Answers (1)

best_answer

Let first term be a and common ratio be r.

a_1=a,a_2=ar,a_3=ar^2,a_4=ar^3

Given : the third term is greater than the first term by 9, and  the second term is greater than the 4 ^{th} by 18.

a_3=a_1+9

\Rightarrow ar^2=a+9

\Rightarrow a(r^2-1)=9.................1

a_2=a_4+18

\Rightarrow ar=ar^3+18

\Rightarrow ar(1-r^2)=18......................2

Dividing equation 2 by 1 , we get

\frac{ ar(1-r^2)}{ -a(1-r^2)}=\frac{18}{9}

\Rightarrow r=-2

Putting value of r , we get

4a=a+9

\Rightarrow 4a-a=9

\Rightarrow 3a=9

\Rightarrow a=3

Thus, four terms of GP are 3,-6,12,-24.

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads