Get Answers to all your Questions

header-bg qa

23.   Find  \lim_{x \rightarrow 0} f (x ) \: \: \lim_{x \rightarrow 1} f (x) \: \: where \: \: \: f (x) = \left\{\begin{matrix} 2x+3 & x \leq 0 \\ 3 ( x+1)& x > 0 \end{matrix}\right.

Answers (1)

best_answer

Given Function

f (x) = \left\{\begin{matrix} 2x+3 & x \leq 0 \\ 3 ( x+1)& x > 0 \end{matrix}\right.

Now,

Limit at x = 0  :

 at\:x=0^-

:\lim_{x\rightarrow{0^-}}f(x)=\lim_{x\rightarrow{0^-}}(2x+3)=2(0)+3=3

at\:x=0^+

\lim_{x\rightarrow{0^+}}f(x)=\lim_{x\rightarrow{0^+}}3(x+1)=3(0+1)=3

Hence limit at x = 0 is 3.

Limit at x = 1

at\:x=1^+

\lim_{x\rightarrow{1^+}}f(x)=\lim_{x\rightarrow{1^+}}3(x+1)=3(1+1)=6

at\:x=1^-

\lim_{x\rightarrow{1^-}}f(x)=\lim_{x\rightarrow{1^-}}3(x+1)=3(1+1)=6

Hence limit at x = 1 is 6.

 

 

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads