Get Answers to all your Questions

header-bg qa

Q.7.    Find r if

         (ii)  ^{5}P_{r}=^{6\! \! }P_{r-1}

Answers (1)

best_answer

Given : ^{5}P_{r}=^{6\! \! }P_{r-1}

To find the value of r.

^{5}P_{r}=^{6\! \! }P_{r-1}

\Rightarrow \, \, \frac{5!}{(5-r)!}= \frac{6!}{(6-(r-1))!}

\Rightarrow \, \, \frac{5!}{(5-r)!}=\frac{6!}{(6-r+1)!}

\Rightarrow \, \, \frac{5!}{(5-r)!}=\frac{6\times 5!}{(6-r+1)!}

\Rightarrow \, \, \frac{1}{(5-r)!}= \frac{6}{(7-r)!}

\Rightarrow \, \, \frac{1}{(5-r)!}= \frac{6}{(7-r)\times (6-r)\times (5-r)!}

\Rightarrow \, \, \frac{1}{1}= \frac{6}{(7-r)\times (6-r)}

\Rightarrow \, \, (7-r)\times (6-r)=6

\Rightarrow \, \, 42-6r-7r+r^2=6

\Rightarrow \, \, r^2-13r+36=0

\Rightarrow \, \, r^2-4r-9r+36=0

\Rightarrow \, \, r(r-4)-9(r-4)=0

\Rightarrow \, \, (r-4)(r-9)=0

\Rightarrow \, \, r=4,9

We know that 

                           ^nP_r=\frac{n!}{(n-r)!}       

                                   where 0\leq r\leq n

                           \therefore 0\leq r\leq 5

Thus, r=4

 

 

 

 

 

 

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads