Get Answers to all your Questions

header-bg qa

    Find    \small \sin\frac{x}{2} , \cos\frac{x}{2} , and \tan\frac{x}{2}     in


Q (10)

\small \sin x = \frac{1}{4}   ,x in quadrant II

Answers (1)

best_answer

\frac{\pi}{2} < x < \pi\\ \\ \frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2} All functions are positive in this range
 

We know that
    \cos^{2}x = 1 - \sin^{2}x
                   = 1 - \left ( \frac{1}{4} \right )^{2}     =   1 - \frac{1}{16} =   \frac{15}{16}
 
     cos x = \sqrt\frac{15}{16} = \pm \frac{\sqrt15}{4} = - \frac{\sqrt15}{4}                 (cos x is -ve in II quadrant)

We know that
       cosx = 2\cos^{2}\frac{x}{2} - 1 
                2\cos^{2}\frac{x}{2} = \cos x + 1 = -\frac{\sqrt15}{4} + 1 = \frac{-\sqrt15+4}{4}
 
                 \cos^{2}\frac{x}{2} = \frac{-\sqrt15+4}{8}
                  \cos\frac{x}{2} = \pm \sqrt\frac{-\sqrt15+4}{8} = \frac{\sqrt{-\sqrt15+4}}{2\sqrt2} = \frac{\sqrt{8-2\sqrt15}}{4}             (because all functions are positive in given range)
          
     similarly,
                  cos x = 1-2\sin^{2}\frac{x}{2}
                          2\sin^{2}\frac{x}{2} = 1 - \cos x\\ \\ 2\sin^{2}\frac{x}{2} = 1 -\left (\frac{-\sqrt15}{4} \right ) = \frac{4+\sqrt15}{4}
                             \sin\frac{x}{2} = \pm \sqrt\frac{\sqrt15+4}{8} = \frac{\sqrt{\sqrt15+4}}{2\sqrt2} = \frac{\sqrt{8+2\sqrt15}}{4}     (because all functions are positive in given range)
 \tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\frac{\sqrt{8+2\sqrt15}}{4}}{\frac{\sqrt{8-2\sqrt15}}{4}} = \frac{{8+2\sqrt15}}{\sqrt{64 - 15\times4}} = \frac{{8+2\sqrt15}}{\sqrt{4}} = 4 + \sqrt15    
  

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads