Get Answers to all your Questions

header-bg qa

Q : 6         Find the area enclosed between the parabola  \small y^2=4ax  and the line \small y=mx

Answers (1)

best_answer

We have to find the area of the shaded region OBA

The curves y=mx and y2=4ax intersect at the following points

\left ( 0,0 \right )and\left ( \frac{4a}{m^{2}},\frac{4a}{m} \right )

\\y^{2}=4ax\\ \Rightarrow y=2\sqrt{ax}

The required area is

\\\int_{0}^{\frac{4a}{m^{2}}}(2\sqrt{ax}-mx)\\ =2\sqrt{a}[\frac{2x^{\frac{3}{2}}}{3}]_{0}^{\frac{4a}{m^{2}}}-m[\frac{x^{2}}{2}]_{0}^{\frac{4a}{m^{2}}}\\ =\frac{32a^{2}}{3m^{3}}-\frac{8a^{2}}{m^{3}}\\ =\frac{8a^{2}}{3m^{3}}units

Posted by

Sayak

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads