Get Answers to all your Questions

header-bg qa

Q : 2     Find the capacity in litres of a conical vessel with

             (ii) height 12 cm, slant height 13 cm 

Answers (1)

best_answer

Given,

Height = h =12\ cm

Slant height = l = \sqrt{r^2 + h^2} = 13\ cm

Radius = r =\sqrt{l^2-h^2} = \sqrt{13^2-12^2}

= \sqrt{(13-12)(13+12)} = \sqrt{(1)(25)}

= 5\ cm

We know,
Volume of a right circular cone = \frac{1}{3}\pi r^2 h

\therefore Volume of the vessel= \frac{1}{3}\times\frac{22}{7}\times5^2\times12

\\ = \frac{22}{7}\times25\times4\\ = \frac{2200}{7}\ cm^3

\therefore Required capacity of the vessel = 

= \frac{2200}{7\times1000} = \frac{11}{35}\ litres

Posted by

HARSH KANKARIA

View full answer