Get Answers to all your Questions

header-bg qa

12.  Find the coordinates of the point where the line through (3, – 4, – 5) and (2, – 3, 1) crosses the plane 2x + y + z = 7.

Answers (1)

best_answer

We know that the equation of the line that passes through the points (x_{1},y_{1},z_{1})and (x_{2},y_{2},z_{2}) is given by the relation;

\frac{x-x_{1}}{x_{2}-x_{1}} = \frac{y-y_{1}}{y_{2}-y_{1}} = \frac{z-z_{1}}{z_{2}-z_{1}}

and the line passing through the points, (3,-4,-5)\ and\ (2,-3,1).

\implies \frac{x-3}{2-3} = \frac{y+4}{-3+4} = \frac{z+5}{1+5} = k\ (say)

\implies \frac{x-3}{-1} = \frac{y+4}{-1} = \frac{z+5}{6} = k\ (say)

\implies x=3-k,\ y=k-4,\ z=6k-5  

And any point on the line is of the form.(3-k,k-4,6k-5)

This point lies on the plane, 2x+y+z = 7

\therefore 2(3-k)+(k-4)+(6k-5) = 7

\implies 5k-3=7

or  k =2.

Hence, the coordinates of the required point are (3-2,2-4,6(2)-5)  or (1,-2,7).

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads