Get Answers to all your Questions

header-bg qa

1 (i) Find the coordinates of the point which divides the line segment joining the points (– 2, 3, 5) and (1, – 4, 6) in the ratio  2 : 3 internally

Answers (1)

best_answer

The line segment joining the points A (– 2, 3, 5) and B(1, – 4, 6)

Let point P(x,y,z) be the point that divides the line segment AB internally in the ratio 2:3.

Now, as we know by section formula, The coordinate of the point P, which divides line segment A(x_1,y_1,z_1) And B(x_2,y_2,z_2) in ratio m:n, 

\left (\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n},\frac{mz_2+nz_1}{m+n} \right )

Now the point that divides A (-2, 3, 5) and B (1, -4, 6) in ratio 2:3 is 

\left (\frac{2(1)+3(-2)}{2+3},\frac{2(-4)+3(3)}{2+3},\frac{2(6)+3(5)}{2+3} \right )=\left ( \frac{-4}{5},\frac{1}{5},\frac{27}{5} \right )

Hence, required point is: 

\left ( \frac{-4}{5},\frac{1}{5},\frac{27}{5} \right )

 

 

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads