Get Answers to all your Questions

header-bg qa

2.  Find the coordinates of the points of trisection of the line segment joining (4, –1) and (–2, –3).

Answers (1)

best_answer

Let the trisection of the line segment A(4,-1) and  B(-2,-3) have the points P(x_{1},y_{1})  and Q(x_{2},y_{2})

Then, 

Section formula: \left (\frac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}} , \frac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}} \right )

By observation point, P divides AB internally in the ratio 1:2.

Hence, m:n = 1:2

Substituting the values in the equation we get;

\Rightarrow P\left (\frac{1(-2)+2(4)}{1+2} , \frac{1(-3)+2(-1)}{1+2} \right )

\Rightarrow P \left (\frac{-2+8}{3} , \frac{-3-2}{3} \right )

\Rightarrow P \left (2 , \frac{-5}{3} \right )

And by observation point Q, divides AB internally in the ratio 2:1

Hence, m:n = 2:1

Substituting the values in the equation above, we get

\Rightarrow Q\left (\frac{2(-2)+1(4)}{2+1} , \frac{2(-3)+1(-1)}{2+1} \right )

\Rightarrow Q \left (\frac{-4+4}{3} , \frac{-6-1}{3} \right )

\Rightarrow Q\left (0 , \frac{-7}{3} \right )

Hence, the points of trisections are P \left (2 , \frac{-5}{3} \right )  and Q\left (0 , \frac{-7}{3} \right )

 

Posted by

Divya Prakash Singh

View full answer