Get Answers to all your Questions

header-bg qa

9(vi)   Find the derivative of \frac{2}{x+1}- \frac{x^2 }{3 x-1} 

Answers (1)

best_answer

Given

f(x)=\frac{2}{x+1}- \frac{x^2 }{3 x-1}

As we know the quotient rule of derivative:

\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2\frac{dy_1}{dx}-y_1\frac{dy_2}{dx}}{y_2^2}

and the property 

\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}

So applying this rule, we get

\frac{d(\frac{2}{x+1}-\frac{x^2}{3x-1})}{dx}=\frac{(x+1)\frac{d(2)}{dx}-2\frac{d(x+1)}{dx}}{(x+1)^2}-\frac{(3x-1)\frac{d(x^2)}{dx}-x^2\frac{d(3x-1)}{dx}}{(3x-1)^2}

\frac{d(\frac{2}{x+1}-\frac{x^2}{3x-1})}{dx}=\frac{-2}{(x+1)^2}-\frac{(3x-1)2x-x^23}{(3x-1)^2}

\frac{d(\frac{2}{x+1}-\frac{x^2}{3x-1})}{dx}=\frac{-2}{(x+1)^2}-\frac{6x^2-2x-3x^2}{(3x-1)^2}

\frac{d(\frac{2}{x+1}-\frac{x^2}{3x-1})}{dx}=\frac{-2}{(x+1)^2}-\frac{3x^2-2x}{(3x-1)^2}

Hence 

f'(x)=\frac{-2}{(x+1)^2}-\frac{3x^2-2x}{(3x-1)^2}

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads