Get Answers to all your Questions

header-bg qa

11.(v)   Find the derivative of the following functions:  3 \cot x + 5 \csc x

Answers (1)

best_answer

Given,

f(x)=3 \cot x + 5 \csc x

As we know  the property 

\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}

Applying the property,

\frac{d(3\cot x+5 \csc x)}{dx}=\frac{d(3\cot x)}{dx}+\frac{d(5\csc x)}{dx}

 

\frac{d(3\cot x+5 \csc x)}{dx}=3\frac{d(\frac{\cos x}{\sin x})}{dx}+\frac{d(5\csc x)}{dx}

\frac{d(3\cot x+5 \csc x)}{dx}=-5\csc x\cot x+3\frac{d(\frac{\cos x}{\sin x})}{dx}

Now As we know the quotient rule of derivative,

\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2\frac{dy_1}{dx}-y_1\frac{dy_2}{dx}}{y_2^2}

So applying this rule, we get

\frac{d(3\cot x+5 \csc x)}{dx}=-5\csc x\cot x+3\left[\frac{\sin x\frac{d(\cos x)}{dx}-\cos x(\frac{d(\sin x)}{dx})}{\sin^2x}\right]

\frac{d(3\cot x+5 \csc x)}{dx}=-5\csc x\cot x+3\left[\frac{\sin x(-\sin x)-\cos x(\cos x)}{\sin^2x}\right]

\frac{d(3\cot x+5 \csc x)}{dx}=-5\csc x\cot x+3\left[\frac{-\sin^2 x-\cos^2 x}{\sin^2x}\right]

\frac{d(3\cot x+5 \csc x)}{dx}=-5\csc x\cot x-3\left[\frac{\sin^2 x+\cos^2 x}{\sin^2x}\right]

\frac{d(3\cot x+5 \csc x)}{dx}=-5\csc x\cot x-3\left[\frac{1}{\sin^2x}\right]

\frac{d(3\cot x+5 \csc x)}{dx}=-5\csc x\cot x-3\csc^2x

 

 

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads