Get Answers to all your Questions

header-bg qa

7.   Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): 

       \frac{1 }{ax ^2 + bx + c}

Answers (1)

best_answer

Given,

f(x)=\frac{1 }{ax ^2 + bx + c}

Now, As we know the derivative of any such  function  is given by 

\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}

Hence, The derivative of f(x) is 

\frac{d(\frac{1}{ax^2+bx+c})}{dx}=\frac{(ax^2+bx+c)d(\frac{d(1)}{dx})-1(\frac{d(ax^2+bx+c)}{dx})}{(ax^2+bx+c)^2}

\frac{d(\frac{1}{ax^2+bx+c})}{dx}=\frac{0-(2ax+b)}{(ax^2+bx+c)^2}

\frac{d(\frac{1}{ax^2+bx+c})}{dx}=-\frac{(2ax+b)}{(ax^2+bx+c)^2}

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads