Get Answers to all your Questions

header-bg qa

5.   Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ax + b / cx + d

Answers (1)

best_answer

Given,

f(x)=\frac{ax+b}{cx+d}

Now, As we know the derivative of any function  

\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}

Hence, The derivative of f(x) is 

\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{(cx+d)d(\frac{d(ax+b)}{dx})-(ax+b)(\frac{d(cx+d)}{dx})}{(cx+d)^2}

\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{(cx+d)a-(ax+b)c}{(cx+d)^2}

\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{acx+ad-acx-bc}{(cx+d)^2}

\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{ad-bc}{(cx+d)^2}

Hence Derivative of the function is 

\frac{ad-bc}{(cx+d)^2}.

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads