Get Answers to all your Questions

header-bg qa

8.   Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):  

         \frac{ax + b }{px^2 + qx + r }

Answers (1)

best_answer

Given,

f(x)=\frac{ax + b }{px^2 + qx + r }

Now, As we know the derivative of any function  

\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}

Hence, The derivative of f(x) is 

\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{(px^2+qx+r)d(\frac{d(ax+b)}{dx})-(ax+b)(\frac{d(px^2+qx+r)}{dx})}{(px^2+qx+r)^2}

\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{(px^2+qx+r)a-(ax+b)(2px+q)}{(px^2+qx+r)^2}

\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{apx^2+aqx+ar-2apx^2-aqx-2bpx-bq}{(px^2+qx+r)^2}

\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{-apx^2+ar-2bpx-bq}{(px^2+qx+r)^2}

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads