Get Answers to all your Questions

header-bg qa

24.   Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):  ( ax ^2 + \sin x ) ( p + q \cos x )

Answers (1)

best_answer

Given,

f(x)=( ax ^2 + \sin x ) ( p + q \cos x )

Now As we know the Multiplication property of derivative,(the product rule)

\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}

And also the property

\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}

Applying those properties we get,

\frac{d(( ax ^2 + \sin x ) ( p + q \cos x ))}{dx}=(ax^2+\sin x)\frac{d(p+q\cos x)}{dx}+(p+qx)\frac{d(ax^2+sinx)}{dx}

\\\frac{d((ax ^2+\sin x ) ( p + q \cos x ))}{dx}=(ax^2+\sin x)(-q\sin x)+(p+qx)(2ax+\cos x)

f'(x)=-aqx^2\sin x-q\sin^2 x+2apx+p\cos x+2aqx^2+qx\cos x

f'(x)=x^2(-aq\sin x+2aq) +x(2ap+q\cos x)+p\cos x-q\sin^2 x

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads