Get Answers to all your Questions

header-bg qa

16.   Find the derivative of the following functions (it is to be understood that a, b, c, d,p, q, r and s are fixed non-zero constants and m and n are integers):

  \frac{\cos x }{1+ \sin x }

Answers (1)

best_answer

Given,

f(x)=\frac{\cos x }{1+ \sin x }

Now, As we know the derivative of any function  

\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{(1+\sin x )d(\frac{d\cos x}{dx})-\cos x(\frac{d(1+\sin x)}{dx})}{(1+\sin x)^2}

Hence, The derivative of f(x) is 

\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{(1+\sin x )(-\sin x)-\cos x(\cos x)}{(1+\sin x)^2}

\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{-\sin x-\sin^2 x -\cos^2 x}{(1+\sin x)^2}

\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{-\sin x-1}{(1+\sin x)^2}

\frac{d(\frac{\cos x}{1+\sin x})}{dx}=-\frac{1}{(1+\sin x)} (Answer)

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads