Get Answers to all your Questions

header-bg qa

 Q16  Find the derivative of the function given by f (x) = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8) and hence find 

           f ' (1)

Answers (1)

best_answer

Given function is
y = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)
Take log on both sides
\log y =\log (1 + x) + \log (1 + x^2) +\log (1 + x^4) +\log (1 + x^8)
NOW, differentiate w.r.t. x
\frac{1}{y}.\frac{dy}{dx} = \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8}\\ \frac{dy}{dx}=y.\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )\\ \frac{dy}{dx}= (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )
Therefore, f^{'}(x)= (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )
Now, the vale of  f^{'}(1)  is
f^{'}(1)= (1 + 1) (1 + 1^2) (1 + 1^4) (1 + 1^8).\left ( \frac{1}{1+1}+ \frac{2(1)}{1+1^2}+ \frac{4(1)^3}{1+1^4}+ \frac{8(1)^7}{1+1^8} \right )\\ f^{'}(1)=16.\frac{15}{2} = 120

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads