Get Answers to all your Questions

header-bg qa

Q4  Find the domain and the range of the real function f defined by f (x) = \sqrt{(x-1)}

Answers (1)

best_answer

Given function is 
f (x) = \sqrt{(x-1)}
We can clearly see that f(x) is only defined for the values of x ,  x\geq 1
Therefore,
The domain of the function f (x) = \sqrt{(x-1)}  is  [1,\infty)
Now, as
\Rightarrow x\geq 1
\Rightarrow x-1\geq 1-1
\Rightarrow x-1\geq 0
take square root on both sides
\Rightarrow \sqrt{x-1}\geq 0
\Rightarrow f(x)\geq 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because f(x)= \sqrt{x-1})
Therefore,
Range  of function f (x) = \sqrt{(x-1)}  is  [0,\infty)

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads