Get Answers to all your Questions

header-bg qa

Find the domain of each of the following functions given by

i) f(x) = \frac{1}{\sqrt{1-\cos x}}

ii) f(x) = \frac{1}{\sqrt{x+\left | x \right |}}

iii)f(x) =x\left | x \right |

iv) f(x) =\frac{x^3-x+3}{x^2-1}

v) f(x) =\frac{3x}{2x-8}

 

Answers (1)

i) Given data:  f(x) = \frac{1}{\sqrt{1-\cos x}}

Now that we know that,

-1 \leq cosx \leq 1

1 \geq -cosx \geq -1

1 + 1 \geq 1 - cos x \geq -1+1

2 \geq 1 - cos x \geq 0

0 \leq 1 - cos x \leq 2

Now, for the real value of the domain,

1 - cos x\neq0,cosx \neq 1

But, x \neq 0\: \: 2n\pi \: \: \forall n \in Z

Thus, domain of f = R - \left \{2n\pi, n \in Z\right \}

 

ii)Given data: f(x) = \frac{1}{\sqrt{x+\left | x \right |}}

Now, x + \left |x \right | = x+x = 2x ...... if \: \: x \geq0

&x + \left |x \right | = x - x = 0 ...... if \: \: x < 0

Now, x<0 is not defined so far, hence,

The domain = R^+

iii)Given data:f(x) =x\left | x \right |

For all x \in R, f(x) is defined

Thus, the domain of f = R.

iv)Given data:f(x) =\frac{x^3-x+3}{x^2-1}

Here, only ifx^2 - 1 \neq 0, f(x) is defined,

(x-1)(x+1) \neq 0,

Thus, x \neq 1

and\: \: x \neq -1

Therefore, domain of f = R - \left \{-1,1\right \}

v)Given data: f(x) =\frac{3x}{2x-8}

F(x) is only defined at 2x - 8 \neq 0, x \neq 4,

Thus, the domain = R - \left \{4\right \}.

 

 

 

 

 

Posted by

infoexpert21

View full answer