Find the equation of each of the following parabolas
(a) Directrix x = 0, focus at (6, 0)
(b) Vertex at (0, 4), focus at (0, 2)
(c) Focus at (–1, –2), directrix x – 2y + 3 = 0
We know that the distance of any point on the parabola from its focus and its directrix is same.
i) Given that directrix x=0 and focus (6,0)
So, for any point P(x,y) on the parabola
Distance of P from directrix=Distance of P from focus x2=(x-6)2+y2
y2-12x+36=0
ii) Given that vertex=(0,4) and focus (0,2)
Now distance between the vertex and directrix is same as the distance between the vertex and focus.
Distance of P from directrix=Distance of P from focus
y2-12y+36=x2+y2-4y+4
x2=32-8y
iii) Given that focus is at (-1,-2)
and directrix x-2y+3=0
x2+2x+1+y2+4y+4=1/5[x2+4y2+9+6x-4xy-12y]
4x2+4xy+y2+4x+32y+16=0