Get Answers to all your Questions

header-bg qa

13.  Find the equation of the circle passing through (0,0) and making intercepts a and b on the coordinate axes.

Answers (1)

best_answer

Let the equation of circle be,

(x-h)^2+(y-k)^2=r^2

Now since this circle passes through (0,0)

(0-h)^2+(0-k)^2=r^2

h^2+k^2=r^2

Now, this circle makes an intercept of a and b on the coordinate axes.it means circle passes through the point (a,0) and (0,b)

So,

(a-h)^2+(0-k)^2=r^2

a^2-2ah+h^2+k^2=r^2

a^2-2ah=0

a(a-2h)=0

a=0\:or\:a-2h=0

Since a\neq0\:so\:a-2h=0

h=\frac{a}{2}

Similarly,

(0-h)^2+(b-k)^2=r^2

h^2+b^2-2bk+k^2=r^2

b^2-2bk=0

b(b-2k)=0

Since b is not equal to zero.

k=\frac{b}{2}

So Final equation of the Circle ;

\left ( x-\frac{a}{2} \right )^2+\left ( y-\frac{b}{}2 \right )^2=\left ( \frac{a}{2} \right )^2+\left ( \frac{b}{2} \right )^2

x^2-ax+\frac{a^2}{4}+y^2-bx+\frac{b^2}{4}=\frac{a^2}{4}+\frac{b^2}{4}

x^2+y^2-ax-bx=0

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads