Get Answers to all your Questions

header-bg qa

Q : 6       Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines  \small x-7y+5=0  and  \small 3x+y=0.    

Answers (1)

best_answer

Point of intersection of the lines  \small x-7y+5=0  and  \small 3x+y=0
\left ( -\frac{5}{22},\frac{15}{22} \right )
It is given that this line is parallel to y - axis i.e. x=0 which means their slopes are equal
Slope of x=0 is ,m' = \infty = \frac{1}{0}
Let the Slope of line passing through point \left ( -\frac{5}{22},\frac{15}{22} \right ) is m
Then,
m=m'= \frac{1}{0}
Now, equation of line passing through point \left ( -\frac{5}{22},\frac{15}{22} \right ) and with slope \frac{1}{0} is
(y-\frac{15}{22})= \frac{1}{0}(x+\frac{5}{22})
x = -\frac{5}{22}
Therefore, equation of line is  x = -\frac{5}{22}

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads