Get Answers to all your Questions

header-bg qa

Find the equation of the line which satisfy the given conditions: 

Q : 6         Intersecting the y-axis at a distance of 2 units above the origin and making an angle of  30^{\circ} with positive direction of the x-axis. 

Answers (1)

best_answer

We know that , equation of line passing through point (x_1,y_1) and with slope m is given by
(y-y_1)=m(x-x_1)
Line Intersecting the y-axis at a distance of 2 units above the origin which means point is (0,2)
we know that
m = \tan \theta\\ m = \tan 30\degree \ \ \ \ \ \ \ \ \ \ \ \ \ (\because \theta = 30 \degree \ given)\\ m = \frac{1}{\sqrt3}
Now, the equation of the line passing through the point (0,2) and with slope \frac{1}{\sqrt3}  is 
(y-2)= \frac{1}{\sqrt3}(x-0)\\ \sqrt3(y-2)= x\\ x-\sqrt3y+2\sqrt3=0
Therefore, the equation of the line  is   x-\sqrt3y+2\sqrt3=0

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads