Find the equation of the plane through the points (2, 1, 0), (3, -2, -2) and (3, 1, 7).
Given points are (2, 1, 0), (3, -2, -2), and (3, 1, 7).
We know, equation of a line passing through 3 non-collinear points (x1 , y1 , z1 ), (x2 , y2 , z2 ) and (x3 , y3 , z3 ) is given as:
Where, (x1 , y1 , z1 ) = (2, 1, 0)
(x2 , y2 , z2 ) = (3, -2, -2)
(x3 , y3 , z3 ) = (3, 1, 7)
Therefore, x1 = 2, y1 = 1, z1 = 0; x2 = 3, y2 = -2, z2 = -2; x3 = 3, y3 = 1, z3 = 7
Substituting these values in the line equation,
Now, since
Hence, the required equation of the plane is 7x + 3y - z = 17.