Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 , which contains the line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0.
Given, a plane is perpendicular to another plane 5x + 3y + 6z + 8 = 0,and also contains line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0.
We must find the equation of this plane.
We know, the equation of a plane passing through the line of intersection of the planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 is given as,
Similarly, the equation of a plane through the line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0. is given by,
Thus, the direction ratio of plane in (i) is,
Since the plane in equation (i) is perpendicular to the plane 5x + 3y + 6z + 8 = 0;
we can replace x, y, z with (1 + 2λ), (2 + λ) and (3 - λ) respectively in the plane 5x + 3y + 6z + 8 = 0 (neglecting 8) and equating to 0.
This gives us,
Substituting this value of in equation (i) we get
Thus, the required equation of the plane is 51x + 15y - 50z + 173 = 0.