Get Answers to all your Questions

header-bg qa

2. Find the general solution:

       \frac{dy}{dx} = \sqrt{4-y^2}\ (-2 < y < 2)

Answers (1)

best_answer

Given, in the question

\frac{dy}{dx} = \sqrt{4-y^2}

\\ \implies \frac{dy}{\sqrt{4-y^2}} = dx \\ \implies \int \frac{dy}{\sqrt{4-y^2}} = \int dx

\\ (\int \frac{dy}{\sqrt{a^2-y^2}} = sin^{-1}\frac{y}{a})\\

The required general solution:

\\ \implies sin^{-1}\frac{y}{2} = x + C     

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads