Get Answers to all your Questions

header-bg qa

Find the general solution Differential Equations Exercise 9 point 4 Q1.

Answers (2)

best_answer

Given,

\frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}

\\ \implies\frac{dy}{dx} = \frac{2sin^2\frac{x}{2}}{2cos^2\frac{x}{2}} = tan^2\frac{x}{2} \\ \implies dy = (sec^2\frac{x}{2} - 1)dx

\\ \implies \int dy = \int sec^2\frac{x}{2}dx - \int dx \\ \implies y = 2tan^{-1}\frac{x}{2} - x + C

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Find the general solution:

    Q1.    \frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}

Posted by

HARSH KANKARIA

View full answer