Get Answers to all your Questions

header-bg qa

Q13  Find the integrals of the functions \frac{\cos 2x - \cos 2a }{\cos x - \cos a }

Answers (1)

best_answer

We know that,

\cos A-\cos B = -2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})

Using this identity we can rewrite the given integral as

\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos\alpha}=\frac{-2\sin\frac{2x+2\alpha}{2}\sin\frac{2x-2\alpha}{2}}{-2\sin\frac{x+\alpha}{2}\sin\frac{x-\alpha}{2}}

                                   \\=\frac{\sin(x+\alpha)\sin(x-\alpha)}{\sin\frac{x+\alpha}{2}\sin\frac{x-\alpha}{2}}\\ =\frac{[2\sin\frac{x+\alpha}{2}\cos \frac{x+\alpha}{2}][2\sin\frac{x-\alpha}{2}\cos\frac{x-\alpha}{2}]}{\sin\frac{x+\alpha}{2}\sin\frac{x-\alpha}{2}}\\ =4\cos\frac{x+\alpha}{2}\cos\frac{x-\alpha}{2}\\ =2[\cos x+\cos \alpha]

\therefore \int\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos\alpha}=\int 2\cos x\ dx +\int 2\cos \alpha\ dx
                                              =2[\sin x + x\cos \alpha]+C

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads