Get Answers to all your Questions

header-bg qa

Q14  Find the integrals of the functions \frac{\cos x - \sin x }{1+ \sin 2x }

Answers (1)

best_answer

\frac{\cos x-\sin x}{1+2\sin x}=\frac{\cos x-\sin x}{(sin^2x+cos^2x)+2 sin x.\cos x}
                                   =\frac{\cos x-\sin x}{(\sin x+\cos x)^2}

 

\\sin x+\cos x =t\\ \therefore (\cos x-\sin x)dx = dt

Now, 
=\int \frac{dt}{t^2}\\ =\int t^-2\ dt\\ =-t^{-1}+C\\ =-\frac{1}{(\sin x+\cos x)}+C

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads