Get Answers to all your Questions

header-bg qa

Q9  Find the integrals of the functions \frac {\cos x }{1 + \cos x }

Answers (1)

best_answer

The integral is rewritten using trigonometric identities

\frac{\cos x}{1+ \cos x}= \frac{\cos^2x/2-\sin^2x/2}{2\cos^2x/2} =\frac{1}{2}[1-\tan^2x/2]
\\=\int \frac{1}{2}[1-\tan^2x/2] dx\\ =\frac{1}{2}\int 1-[sec^2\frac{x}{2}-1]=\frac{1}{2}\int 2-sec^2\frac{x}{2}\\=x-tan\frac{x}{2}+c

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads