Get Answers to all your Questions

header-bg qa

Q5  Find the integrals of the functions \sin ^3 x \cos ^ 3 x

Answers (1)

best_answer

I = \int \sin^3x.\cos^3x\ dx

rewrite the integral as follows

    \\=\int cos^3x.sin^2x.\sin x\ dx\\ =\int cos^3x(1-\cos^2x)\sin x\ dx
 Let   \cos x = t \Rightarrow \sin x dx =-dt

   \\=-\int t^3(1-t^2)dt\\ =-\int(t^3-t^5)dt\\ =-[\frac{t^4}{4}]+[\frac{t^6}{6}] +C\\ =\frac{\cos^6x}{6}-\frac{cos^4x}{4}+C......(replace the value of t as cos\ x)

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads