Get Answers to all your Questions

header-bg qa

Q17  Find the integrals of the functions \frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }

Answers (1)

best_answer

\frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x } 

now splitting the terms we can write

\\=\frac{\sin^3x}{\sin^2x.\cos^2x}+\frac{\cos^3x}{\sin^2x.\cos^2x}\\ =\frac{\sin x}{cos^2x}+\frac{\cos x}{\sin^2x}\\ =\tan x.\sec x+\cot xcosec x

Therefore, the integration of 
                                               \frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x } 

                                             \\=\int (\tan x\sec x+\cot xcosec x)dx\\ =\sec x-cosec\ x+C

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads