Get Answers to all your Questions

header-bg qa

Q12  Find the integrals of the functions \frac{\sin ^ 2x }{1+ \cos x }

Answers (1)

best_answer

Using trigonometric identities we can write the given integral as follows.

\frac{\sin ^ 2x }{1+ \cos x } 

\\=\frac{4\sin^2\frac{x}{2}\cos^2\frac{x}{2}}{2\cos^2\frac{x}{2}}\\ =2\sin^2\frac{x}{2}\\ =1-\cos x

\therefore \int \frac{sin^22x}{1+\cos x} = \int (1-\cos x)dx
                                 \\= \int 1dx-\int\cos x\ dx\\ =x-\sin x+C
 

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads