Get Answers to all your Questions

header-bg qa

Q : 8       Find the inverse of each of the matrices (if it exists).

               \small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix}

Answers (1)

best_answer

Given the matrix :  \small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix} = A

To find the inverse we have to first find adjA then as we know the relation:

A^{-1} = \frac{1}{|A|}adjA

So, calculating |A| :

|A| = 1(-3-0)-0(-3-0)+0(6-15) = -3

Now, calculating the cofactors terms and then adjA.

A_{11} = (-1)^{1+1} (-3-0) = -3                  A_{12} = (-1)^{1+2} (-3-0) = 3

A_{13} = (-1)^{1+3} (6-15) =-9                      A_{21} = (-1)^{2+1} (0-0) = 0

A_{22} = (-1)^{2+2} (-1-0) = -1             A_{23} = (-1)^{2+1} (2-0) = -2

A_{31} = (-1)^{3+1} (0-0) = 0             A_{32} = (-1)^{3+2} (0-0) =0

A_{33} = (-1)^{3+3} (3-0) = 3               

So, we have adjA = \begin{bmatrix} -3 &0 &0 \\ 3& -1 &0 \\ -9& -2 &3 \end{bmatrix}

Therefore inverse of A will be:

A^{-1} = \frac{1}{|A|}adjA

= \frac{-1}{3}\begin{bmatrix} -3 &0 &0 \\ 3 & -1& 0\\ -9 &-2 &3 \end{bmatrix}

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads