Get Answers to all your Questions

header-bg qa

Q : 7       Find the inverse of each of the matrices (if it exists).

               \small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}

Answers (1)

best_answer

Given the matrix :  \small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}= A

To find the inverse we have to first find adjA then as we know the relation:

A^{-1} = \frac{1}{|A|}adjA

So, calculating |A| :

|A| = 1(10-0)-2(0-0)+3(0-0) = 10

Now, calculating the cofactors terms and then adjA.

A_{11} = (-1)^{1+1} (10) = 10                  A_{12} = (-1)^{1+2} (0) = 0

A_{13} = (-1)^{1+3} (0) =0                      A_{21} = (-1)^{2+1} (10) = -10

A_{22} = (-1)^{2+2} (5-0) = 5             A_{23} = (-1)^{2+1} (0-0) = 0

A_{31} = (-1)^{3+1} (8-6) = 2             A_{32} = (-1)^{3+2} (4-0) =-4

A_{33} = (-1)^{3+3} (2-0) = 2               

So, we have adjA = \begin{bmatrix} 10 &-10 &2 \\ 0& 5 &-4 \\ 0& 0 &2 \end{bmatrix}

Therefore inverse of A will be:

A^{-1} = \frac{1}{|A|}adjA

= \frac{1}{10}\begin{bmatrix} 10 &-10 &2 \\ 0 & 5& -4\\ 0 &0 &2 \end{bmatrix}

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads