Get Answers to all your Questions

header-bg qa

Q7.10 (a)     Find the moment of inertia of a sphere about a tangent to the sphere, given the
                    moment of inertia of the sphere about any of its diameters to be 2MR^{2}/5 , where
                    M is the mass of the sphere and R  is the radius of the sphere.

Answers (1)

best_answer

We know that moment of inertia of a sphere about diameter is :

                                                                                                     =\ \frac{2}{5}MR^2

                                                               Rotational motion,   20123

Using parallel axes theorem we can find MI about the tangent.

        Moment of inertia of a sphere about tangent   : 

                                                                                    =\ \frac{2}{5}MR^2\ +\ MR^2\ =\ \frac{7}{5}MR^2 

Posted by

Devendra Khairwa

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads