Find the points of local maxima, local minima and the points of inflection of the function . Also find the corresponding local maximum and local minimum values.
Given: function
To find: the points of local maxima, local minima and the points of inflection of f(x) and also to find the corresponding local maximum and local minimum values.
Explanation: given
Calculating the first derivative of f(x), i.e.,
Equating the first derivative with 0 to find out the critical point,
Then splitting the middle term, we get
Now we will find the corresponding y value by putting the numerous values of x in given function
Hence the point is (0,-1)
Hence the point is (1,0)
Hence the point is (3,-28)
Therefore, we see that
At x = 3, y has minimum value = -28. Hence x = 3 is point of local minima.
At x = 1, y has maximum value = 0. Hence x = 1 is point of local maxima.
And at x = 0, y has neither maximum nor minimum value, hence this is point of inflection.