Get Answers to all your Questions

header-bg qa

Find the range of the following functions given by

i) f\left ( x \right )= \frac{3}{2-x^2}

ii)f\left ( x \right )= 1-\left | x-2 \right |

iii) f\left ( x \right )= \left | x-3 \right |

iv) f\left ( x \right )= 1+3\cos 2x

Answers (1)

i)Given data: f\left ( x \right )= \frac{3}{2-x^2}

Let us consider that, y = f(x)

Thus, y = 3/(2 - x^2)

Thus,

y(2 - x^2) = 3

2y - yx^2 = 3

yx^2 = 2y - 3

x^2 = 2 - 3/y

x is real, if 2y - 3 \geq0 \: \: and\: \: y \geq0

Thus, y \geq 3/2

Therefore,

Range of f = (3/2, \infty)

ii)Given data: f\left ( x \right )= 1-\left | x-2 \right |

Now, we know that,

 \left |x-2 \right | = -(x-2) , if x < 2, \: \: and\: \: \left | x-2 \right |= (x-2), if \geq 2

Thus, \left |-x-2 \right | \geq 0

Thus, 1 -\left | x-2 \right | \leq 1

Therefore,

Range off = (-\infty, 1)

iii)Given data: f\left ( x \right )= \left | x-3 \right |

Now, we know that,

\left |x-3 \right | \geq 0

Thus, f(x) = 0

Therefore, range of f = (0,\infty)

iv)Given data: f\left ( x \right )= 1+3\cos 2x

Now, we know that,

-1 \leq cos 2x \leq 1

Thus, -3 \leq 3 cos 2x \leq 3

-3 + 1 \leq 1 + 3 cos 2x \leq 3 + 1

Thus, -2 \leq 1 + 3 cos 3x \leq 4

-2 \leq f(x) \leq 4

Therefore, range of f = [-2, 4].

Posted by

infoexpert21

View full answer