Find the sixth term of the expansion (y1/2 + x1/3)n, if the binomial coefficient of the third term from the end is 45.
Given: (y1/2 + x1/3)n
From the end, binomial coefficient of 3rd term = 45
Thus, nCn-2 = 45 , nC2 = 45
i.e., n(n-1)(n-2)!/2!(n-2)! = 45
Now, n(n-1) = 90,
n2 – n – 90 = 0,
(n – 10)(n + 9) = 0
n = 10 …. (since n is not equal to -9)
Now, the 6th term,
=10C5 (y1/2)10-5 (x1/3)5
= 252y5/2.x5/3