Get Answers to all your Questions

header-bg qa

2.  Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.

Answers (1)

best_answer

Numbers divisible by 5 from 100 to 1000 are 105,110,.............995

This sequence is an A.P.

Here , first term =a =105

common difference = 5.

We know , a_n = a+(n-1)d

              995 = 105+(n-1)5

      \Rightarrow \, \, 890 = (n-1)5

    \Rightarrow \, \, 178 = (n-1)

 \Rightarrow \, \, n=178+1=179

 

S_n = \frac{n}{2}[2a+(n-1)d]

       = \frac{179}{2}[2(105)+(179-1)5]

     = \frac{179}{2}[2(105)+178(5)]

      = 179\times 550

     = 98450

The  sum of numbers divisible by 5 from 100 to 1000 is 98450.

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads